List 4

Sequences, limits, asymptotes
67. (a) If $a_{n}=(n+2)^{3}$, give the value of $a_{3} .5^{3}=125$
(b) For the sequence $b_{n}=n^{-n}$, what are the values b_{1}, b_{2}, and b_{3} ?

$$
b_{1}=1, \quad b_{2}=\frac{1}{4}=0.25, \quad b_{3}=\frac{1}{27} \approx 0.037037
$$

(c) If $c_{n}=\left(1+\frac{1}{n}\right)^{n}$, what are the values c_{1}, c_{2}, and c_{3} ? Give exact formulas (by hand) and decimal answers (using a calculator). $c_{1}=2, c_{2}=\frac{9}{4}=2.25$,

$$
c_{3}=\frac{64}{27} \approx 2.3704
$$

68. Consider the sequence

$$
\begin{aligned}
& s_{1}=2 \\
& s_{2}=22 \\
& s_{3}=222 \\
& s_{4}=2222 \\
& s_{n}=\underbrace{22 \ldots 2}_{n \text { digite }}
\end{aligned}
$$

(a) Calculate $\left(10 s_{1}+2\right)-s_{1}$, then $\left(10 s_{2}+2\right)-s_{2}$, then $\left(10 s_{3}+2\right)-s_{3}$.
$20,200,2000$
(b) Find a formula for $\left(10 s_{n}+2\right)-s_{n}$ in terms of n only. $2 \cdot 10^{n}$
(c) Find a formula for $s_{n} \cdot \frac{2}{9}\left(10^{n}-1\right)$

A sequence a_{n} is monotonically increasing if $a_{n+1}>a_{n}$ for all n.
A sequence a_{n} is monotonically decreasing if $a_{n+1}<a_{n}$ for all n.
A sequence is monotonic if it is either monotonically increasing or m . decreasing.
69. Label each of the following sequences as "monotonically increasing" or "monotonically decreasing" or "neither". Assume $n \geq 1$.
(a) n^{2} increasing
(b) $\frac{2}{n^{2}}$ decreasing
(c) $(-5)^{n}$ neither
(d) $(-5)^{2 n}$ increasing
(e) $\frac{n^{3}}{n^{4}+20}$ neither because $a_{2}>a_{1}$ but $a_{4}<a_{3}$.

A sequence $\left(a_{1}, a_{2}, \ldots\right)$ is arithmetic if $a_{n+1}-a_{n}$ is constant.
A sequence $\left(a_{1}, a_{2}, \ldots\right)$ is geometric if a_{n+1} / a_{n} is constant.
70. Find the general formula for the arithmetic sequence that satisfies $a_{3}=3$ and $a_{12}=21$. Also calculate $S_{20}=a_{1}+a_{2}+\cdots+a_{20} . a_{n}=-3+2 n$ and $S_{20}=360$
71. Find the general formula for the geometric sequence that satisfies $a_{2}=18$ and $a_{4}=2$. Also calculate $S_{5} \cdot a_{n}=162 \cdot\left(\frac{1}{3}\right)^{n}$ and $S_{5}=\frac{242}{3}$
72. Find the sum of all three-digit numbers that are divisible by 3.165150

We say that limit of a sequence a_{n} is the number L and write

$$
" \lim _{n \rightarrow \infty} a_{n}=L "
$$

if for any $\varepsilon>0$ there exists an N such that

$$
L-\varepsilon<a_{n}<L+\varepsilon \quad \text { for all } n>N .
$$

We write " $\lim _{n \rightarrow \infty} a_{n}=\infty$ " if for any $M>0$ there exist an N such that

$$
a_{n}>M \quad \text { for all } n>N .
$$

Similarly, " $\lim _{n \rightarrow \infty} a_{n}=-\infty$ " if for any $M>0, \ldots a_{n}<-M$ for all $n>N$.
73. (a) For which positive integers n is $4-\frac{1}{100}<\frac{8 n}{2 n+9}<4+\frac{1}{100}$? $n \geq 1796$
(b) For which positive integers n is $\frac{8 n}{2 n+9}=4$? None!
(c) Is it true that $\lim _{n \rightarrow \infty} \frac{8 n}{2 n+9}=4$? Yes
74. Calculate $\lim _{n \rightarrow \infty} \frac{3 n^{2}+n+\sqrt{n}}{5 n^{2}}=\frac{3}{5}$
75. Find the following limits if they exist.
(a) $\frac{n}{n+1}$ yes
(b) $(-1)^{n}$ no
(c) $\frac{3 n}{9 n+7}$ yes
$\hat{*}(\mathrm{~d}) \sin (3 n) n 0$
(e) $\sin (\pi n)$ yes because the sequence is $0,0,0,0, \ldots$
(f) $\frac{(-1)^{n+1}}{n}$ yes Specifically, the limit is 0 .
(g) $\lim _{n \rightarrow \infty} \frac{n+13}{n^{2}}=0$
(h) $\lim _{n \rightarrow \infty} \frac{(n+5)(n-2)}{n^{2}-6 n+7}=1$
(i) $\lim _{n \rightarrow \infty} \frac{n^{2}}{n+13}=\infty$
(j) $\lim _{n \rightarrow \infty} \frac{8}{\sqrt{n}}=0$
(k) $\lim _{n \rightarrow \infty}-2^{n}=-\infty$
(l) $\lim _{n \rightarrow \infty}(-2)^{n}$ doesn't exist
(m) $\lim _{n \rightarrow \infty} 2^{-n}=0$
(n) $\lim _{n \rightarrow \infty} 2^{1 / n}=1$
(o) $\lim _{n \rightarrow \infty}\left(\left(9 \sqrt{n}+\frac{1}{\sqrt{n}}\right)^{2}-81 n\right)=18$
~ 76 . Find $\lim _{n \rightarrow \infty} n \cdot\left(2^{1 / n}-1\right)$. The means that this task is harder than what is normally expected in this course. $\ln (2)$
77. (a) Simplify the formula $\frac{(\sqrt{n}-\sqrt{n-1})(\sqrt{n}+\sqrt{n-1})}{\sqrt{n}+\sqrt{n-1}}=\frac{1}{\frac{1}{\sqrt{n}+\sqrt{n-1}}}$
(b) Find $\lim _{n \rightarrow \infty} \sqrt{n}-\sqrt{n-1}=\lim _{n \rightarrow \infty} \frac{1}{\sqrt{n}+\sqrt{n-1}}=0$
78. Use the Squeeze Theorem with $\frac{-1}{n} \leq \frac{\cos (n)}{n} \leq \frac{1}{n}$ to find $\lim _{n \rightarrow \infty} \frac{\cos (n)}{n}$. $\lim _{n \rightarrow \infty} \frac{-1}{n}=0$ and $\lim _{n \rightarrow \infty} \frac{1}{n}=0$, so by Squeeze Theorem we have $\lim _{n \rightarrow \infty} \frac{\cos (n)}{n}=0$.
N79. Use the fact that $\left(1-\frac{1}{\sqrt{n}}\right)^{n} \leq \frac{1}{n}$ to find $\lim _{n \rightarrow \infty}(1 / n)^{1 / n}$.
We need an inequality involving $(1 / n)^{1 / n}$, but the right side of $\left(1-\frac{1}{\sqrt{n}}\right)^{n} \leq \frac{1}{n}$ is just $(1 / n)$. Raising both sides of the equation to the power $1 / n$ gives

$$
1-\frac{1}{\sqrt{n}} \leq\left(\frac{1}{n}\right)^{1 / n}
$$

The Squeeze Theorem requires two inequalities. The left-hand side now has limit

$$
\lim _{n \rightarrow \infty} 1-\frac{1}{\sqrt{n}}=1-0=1
$$

so another inequality involving a limit of 1 would be good. In fact,

$$
\left(\frac{1}{n}\right)^{1 / n} \leq 1
$$

is enough, and it is true because $\frac{1}{n} \leq 1^{n}$ is true for all $n \geq 1$ (this is just $\frac{1}{n} \leq 1$).

We can now use the Squeeze Theorem:

$$
\begin{aligned}
1-\frac{1}{\sqrt{n}} \leq\left(\frac{1}{n}\right)^{1 / n} & \leq 1 \\
\lim _{n \rightarrow \infty} 1-\frac{1}{\sqrt{n}} \leq \lim _{n \rightarrow \infty}\left(\frac{1}{n}\right)^{1 / n} & \leq \lim _{n \rightarrow \infty} 1 \\
1 \leq \lim _{n \rightarrow \infty}\left(\frac{1}{n}\right)^{1 / n} & \leq 1 \\
\lim _{n \rightarrow \infty}\left(\frac{1}{n}\right)^{1 / n} & =1
\end{aligned}
$$

80. (a) The definition of the number " 0.385 " is

$$
3 \cdot 10^{-1}+8 \cdot 10^{-2}+5 \cdot 10^{-2}
$$

Write this number as a fraction (or an integer, if possible). $\frac{385}{1000}$ or $\frac{77}{200}$
(b) The definition of the number " $0.2222 \ldots$ " is the limit of the sequence

$$
\begin{aligned}
& S_{1}=0.2 \\
& S_{2}=0.22 \\
& S_{3}=0.222 \\
& S_{4}=0.2222 \\
& S_{n}=0 . \underbrace{22 \ldots 2}_{n \text { digits }}
\end{aligned}
$$

Write this number as a fraction (or an integer, if possible).
Hint: See Task 68(c).
$S_{n}=\frac{a_{n} \text { from Task 68(c) }}{10^{n}}=\frac{\frac{2}{9}\left(10^{n}-1\right)}{10^{n}}=\frac{2}{9}\left(1-10^{-n}\right)$.
Therefore $\lim _{n \rightarrow \infty} S_{n}=\lim _{n \rightarrow \infty} \frac{2}{9}\left(1-10^{-n}\right)=\frac{2}{9}$
(c) The definition of the number "0.9999..." is the limit of the sequence

$$
S_{n}=\underbrace{0.9 \ldots 9}_{n \text { digits }} .
$$

Write this number as a fraction (or an integer, if possible).
$S_{n}=1-10^{-n}$, so $\lim _{n \rightarrow \infty} S_{n}=1$
81. Convert $1.8888 \ldots=\frac{17}{9}$ and $0.313131 \ldots=\frac{31}{99}$ into fractions.
82. Use the facts

$$
0<\ln (n) \quad \text { for all } n \in \mathbb{N} \text { with } n \geq 2
$$

and

$$
\ln (n)<\sqrt{n} \quad \text { for all } n \in \mathbb{N}
$$

to determine the value of $\lim _{n \rightarrow \infty} \frac{\ln (n)}{n}$. Diving the given inequalities by n (which is positive) gives $0<\frac{\ln (n)}{n}$ and $\frac{\ln (n)}{n}<\frac{\sqrt{n}}{n}$. Using basic algebra,

$$
\frac{\sqrt{n}}{n}=\frac{n^{1 / 2}}{n}=n^{-1 / 2}=\left(\frac{1}{n}\right)^{1 / 2}
$$

so $\lim _{n \rightarrow \infty} \frac{\sqrt{n}}{n}=\left(\lim _{n \rightarrow \infty} \frac{1}{n}\right)^{1 / 2}=0$, and the Squeeze Theorem gives $\lim _{n \rightarrow \infty} \frac{\ln (n)}{n}=0$.
83. Use the Squeeze Theorem to find $\lim _{n \rightarrow \infty}\left(5^{n}+3^{n}\right)^{1 / n}$ and $\lim _{n \rightarrow \infty} \frac{n^{3}}{3^{n}}$. First part: 5 from

$$
\left(5^{n}\right)^{1 / n} \leq\left(5^{n}+3^{n}\right)^{1 / n} \leq\left(5^{n}+5^{n}\right)^{1 / n}
$$

Second part: 0
84. Find the limits of these sequences and functions:
(a) $\lim _{n \rightarrow \infty} \frac{2^{n}+4^{n+1 / 2}}{4^{n}}=2$
(b) $\lim _{x \rightarrow \infty} \frac{2^{x}+4^{x+1 / 2}}{4^{x}}=2$
(c) $\lim _{n \rightarrow \infty} \frac{n^{3}+n^{-3}}{n^{2}+n^{-9}}=\infty$
(d) $\lim _{x \rightarrow \infty} \frac{x^{3}+x^{-3}}{x^{2}+x^{-9}}=\infty$
(e) $\lim _{n \rightarrow \infty} \sin (\pi n)=0$ because $\sin (\pi n)=0$ for all $n \in \mathbb{N}$
(f) $\lim _{x \rightarrow \infty} \sin (\pi x)$ doesn't exist
85. Calculate $\lim _{x \rightarrow \infty} 6^{x}=\infty$ and $\lim _{x \rightarrow-\infty} 6^{x}=0$.
86. For the function whose graph is shown below, give the following limits (if they exist) to the nearest 0.5 .
(a) $\lim _{x \rightarrow 1} f(x)$ does not exist
(b) $\lim _{x \rightarrow 2} f(x) 1.5$ (or something similar)
(c) $\lim _{x \rightarrow 3} f(x) \boxed{2}(\operatorname{not} 3.5$, although $f(3)=3.5)$
(d) $\lim _{x \rightarrow \infty} f(x) 3$

87. Does $\lim _{x \rightarrow 0} \frac{|x|-4}{|x-4|}$ exist? Yes Does $\lim _{x \rightarrow 4} \frac{|x|-4}{|x-4|}$ exist? No Draw a graph of the function for x-values between -5 and 5 .
At $x=0, f=\frac{0-4}{4}=-1$. At $x=4$ the function is not defined. There are three regions to consider:

- $x>4$ (in which $|x|=x$ and $|x-4|=x-4$),
- $0<x<4$ (in which $|x|=x$ but $|x-4|=4-x$),
- $x<0$ (in which $|x|=-x$ and $|x-4|=4-x$)

In fact, we can write this as a piecewise function:

$$
\frac{|x|-4}{|x-4|}=\left\{\begin{array}{ll}
\frac{-x-4}{4-x} & \text { if } x<0 \\
\frac{x-4}{4-x} & \text { if } 0 \leq x<4 \\
\frac{x-4}{x-4} & \text { if } x>4
\end{array}= \begin{cases}\frac{x+4}{x-4} & \text { if } x<0 \\
-1 & \text { if } 0 \leq x<4 \\
1 & \text { if } x>4\end{cases}\right.
$$

88. Using the function $g(x)=\left\{\begin{array}{ll}x^{2} & \text { if } x \leq-2 \\ x & \text { if }-2<x<2, \\ 4 & \text { if } x=2 \\ 3^{-x} & \text { if } x>2\end{array}\right.$ calculate the following:
(a) $\lim _{x \rightarrow-\infty} g(x)=\lim _{x \rightarrow-\infty} x^{2}=+\infty$, or you can say it does not exist
(b) $\lim _{x \rightarrow(-2)^{-}} g(x)=\lim _{x \rightarrow-2^{-}} x^{2}=4$
(c) $\lim _{x \rightarrow(-2)^{+}} g(x)=\lim _{x \rightarrow-2^{+}} x=-2$
(d) $\lim _{x \rightarrow-2} g(x)$ does not exist because $4 \neq-2$
(e) $\lim _{x \rightarrow 2^{-}} g(x)=\lim _{x \rightarrow 2^{-}} x=2$
(f) $\lim _{x \rightarrow \infty} g(x)=\lim _{x \rightarrow \infty} 3^{-x}=0$
89. Calculate $\lim _{t \rightarrow 8} \frac{t+4+t^{1 / 3}}{t^{2}-8 t+7}$ and $\lim _{t \rightarrow-3} \frac{\sqrt{2 t+22}-4}{t+3}$.

First part: just plug in $t=8!\frac{8+4+2}{64-64+7}=\frac{14}{7}=2$.
Second part:

$$
\begin{aligned}
\lim _{t \rightarrow-3} \frac{\sqrt{2 t+22}-4}{t+3} & =\lim _{t \rightarrow-3} \frac{(\sqrt{2 t+22}-4)}{(t+3)} \frac{(\sqrt{2 t+22}+4)}{(\sqrt{2 t+22}+4)}=\lim _{t \rightarrow-3} \frac{2 t+22-16}{(t+3)(\sqrt{2 t+22}+4)} \\
& =\lim _{t \rightarrow-3} \frac{2(t+3)}{(t+3)(\sqrt{2 t+22}+4)}=\lim _{t \rightarrow-3} \frac{2}{\sqrt{2 t+22}+4}=\frac{2}{8}=\frac{1}{4}
\end{aligned}
$$

90. (a) Expand $(\sqrt{h+1}-1)(\sqrt{h+1}+1)$ and then simplify as much as possible.

$$
(\sqrt{h+1}-1)(\sqrt{h+1}+1)=(h+1)^{2}-\sqrt{h+1}-\sqrt{h+1}-1=h
$$

(b) Calculate $\lim _{h \rightarrow 0} \frac{\sqrt{h+1}-1}{h}$.

$$
\lim _{h \rightarrow 0} \frac{\sqrt{h+1}-1}{h} \cdot \frac{\sqrt{h+1}+1}{\sqrt{h+1}+1}=\lim _{h \rightarrow 0} \frac{h}{h \sqrt{h+1}+h}=\lim _{h \rightarrow 0} \frac{1}{\sqrt{h+1}+1}=\frac{1}{2}
$$

91. Calculate the following limits:
(a) $\lim _{x \rightarrow \infty} \frac{3 x^{3}-2 x+1}{6 x^{3}+x^{2}+x+19}=\frac{1}{2}$
(e) $\lim _{x \rightarrow \infty}\left(4^{x}+1\right)^{1 / 4}=\infty$
(b) $\lim _{x \rightarrow \infty} \frac{3 x^{2}-2 x+1}{6 x^{3}+x^{2}+x+19}=0$
(f) $\lim _{x \rightarrow \infty}\left(4^{x}+x\right)^{1 / x}=4$
(c) $\lim _{x \rightarrow 0}\left(\frac{8 x-1}{x-x^{2}}+\frac{1}{x}\right)=7$
(g) $\lim _{x \rightarrow 7} \frac{x^{2}-4 x-21}{x^{2}-11 x+28}=\frac{10}{3}$
(d) $\lim _{x \rightarrow \infty}\left(\sqrt{9 x^{2}+5 x}-3 x\right)=\frac{5}{6}$
(h) $\lim _{x \rightarrow 0} \frac{x^{3}-8 x^{2}+3 x+5}{x^{9}-6 x^{5}+x^{4}-12 x+1}=5$
92. (a) Find the vertical asymptote(s) of

$$
g(x)=\frac{1}{x^{2}+x-6} . \quad x=-3, x=2
$$

(b) Find the vertical asymptote(s) of

$$
f(x)=\frac{x^{2}-x-2}{x^{2}+x-6}
$$

$$
x=-3 \text { only }
$$

93. What horizontal asymptotes does the function

$$
f(x)=\frac{x}{|x|+5}
$$

have? Hint: Calculate $\lim _{x \rightarrow \infty} f(x)$ and $\lim _{x \rightarrow-\infty} f(x) . y=1, y=-1$
94. If $f(x)$ is a function for which

$$
24 x-41 \leq f(x) \leq 4 x^{2}-5
$$

for all x, what is $\lim _{x \rightarrow 3} f(x)$?
$\lim _{x \rightarrow 3}(24 x-41)=31$ and $\lim _{x \rightarrow 3}\left(4 x^{2}-5\right)=31$, so the Squeeze Theorem guarantees that $\lim _{x \rightarrow 3} f(x)=31$.
95. List all points where the function graphed below is discontinuous.

$x=1, x=4, x=6$ The function is continuous at $x=3$.
96. Give an example of a function that is discontinuous at infinitely many points. There are many examples. Here are two:

- $\tan (x)$ is discontinuous (in fact, undefined) at all $x=\frac{ \pm \pi}{2}+2 \pi n$ for integer n.
- The "floor" function $\lfloor x\rfloor$ is discontinuous at every integer $x=n$.
$\sum 97$. Give an example of a function that is discontinuous at every point.
The "Dirichlet function" is a famous (well, famous within mathematics) example: $f(x)= \begin{cases}1 & \text { if } x \text { is rational, } \\ 0 & \text { if } x \text { is irrational. }\end{cases}$

98. Find all value(s) of the parameter p for which

$$
f(x)= \begin{cases}3 x+p & \text { if } x \leq 8 \\ 2 x-5 & \text { if } x>8\end{cases}
$$

is continous. $p=-13$
99. Find all value(s) of the parameters a, b for which

$$
f(x)= \begin{cases}x & \text { if }|x| \leq 2 \\ x^{2}+a x+b & \text { if }|x|>2\end{cases}
$$

is continous. $a=1, b=-4$
100. Match the functions with their graphs:
(a) $\frac{x}{x^{2}-1}$ (II)
(b) $\frac{1}{x^{2}-1}$ (I)
(c) $\frac{x+1}{x^{2}-1}$ (IV)
(d) $\frac{x^{2}}{x^{2}-1}$ (III)
(I)
(II)

(III)

101. Without graphing, determine which one of the three equations below has a solution with $0 \leq x \leq 3$.
(A) $x^{2}=4^{x}$,
(B) $x^{3}=5^{x}$,
(C) $x^{5}=6^{x}$.
(C) because the function $f(x)=x^{5}-6^{x}$ has $f(0)=-1$ and $f(3)=27$. Since $-1<0<27$, by the Intermediate Value Theorem, there must exist an x in $[0,3]$ such that $f(x)=0$.
102. Let $f(x)=\frac{13 x-77}{x-5}$.
(a) $f(4)=25$ and $f(11)=11$. Does the Intermediate Value Theorem guarantee that $f(x)=10$ for some $x \in[4,11]$?
No because f is discontinuous at $x=5$.
(b) $f(6)=1$ and $f(11)=11$. Does the Intermediate Value Theorem guarantee that $f(x)=10$ for some $x \in[6,11]$?
Yes because f is continuous on $[6,11]$. (In fact $f(9)=10$, though the task does not ask for this.)
(c) $f(6)=1$ and $f(8)=9$. Does the Intermediate Value Theorem guarantee that $f(x)=10$ for some $x \in[6,8]$?
No because 10 is not in the y-interval $[f(6), f(8)]=[1,9]$.
103. (a) Find $\lim _{x \rightarrow 0} \frac{(5+x)^{3}-125}{x}=75$
(b) Find $\lim _{h \rightarrow 0} \frac{(5+h)^{3}-125}{h}=75$
(c) Find $\lim _{h \rightarrow 0} \frac{(x+h)^{3}-x^{3}}{h}$. Your answer will be a formula with x. $3 x^{2}$

