Math for Management, Winter 2023

List 4

Sequences, limits, asymptotes

67. (a) If $a_n = (n+2)^3$, give the value of a_3 . $5^3 = 125$

(b) For the sequence $b_n = n^{-n}$, what are the values b_1 , b_2 , and b_3 ?

 $b_1 = 1$, $b_2 = \frac{1}{4} = 0.25$, $b_3 = \frac{1}{27} \approx 0.037037$

(c) If $c_n = (1 + \frac{1}{n})^n$, what are the values c_1 , c_2 , and c_3 ? Give exact formulas (by hand) and decimal answers (using a calculator). $c_1 = 2$, $c_2 = \frac{9}{4} = 2.25$,

$$c_3 = \frac{64}{27} \approx 2.3704$$

68. Consider the sequence

$$s_1 = 2$$

$$s_2 = 22$$

$$s_3 = 222$$

$$s_4 = 2222$$

$$s_n = \underbrace{22...2}_{n \text{ digits}}$$

- (a) Calculate $(10s_1 + 2) s_1$, then $(10s_2 + 2) s_2$, then $(10s_3 + 2) s_3$. 20, 200, 2000
- (b) Find a formula for $(10s_n + 2) s_n$ in terms of *n* only. $2 \cdot 10^n$
- (c) Find a formula for s_n . $\frac{2}{9}(10^n 1)$

A sequence a_n is **monotonically increasing** if $a_{n+1} > a_n$ for all n. A sequence a_n is **monotonically decreasing** if $a_{n+1} < a_n$ for all n.

A sequence is **monotonic** if it is either monotonically increasing or m. decreasing.

- 69. Label each of the following sequences as "monotonically increasing" or "monotonically decreasing" or "neither". Assume $n \ge 1$.
 - (a) n^2 increasing
 - (b) $\frac{2}{n^2}$ decreasing
 - (c) $(-5)^n$ neither
 - (d) $(-5)^{2n}$ increasing
 - (e) $\frac{n^3}{n^4 + 20}$ neither because $a_2 > a_1$ but $a_4 < a_3$.

A sequence $(a_1, a_2, ...)$ is **arithmetic** if $a_{n+1} - a_n$ is constant. A sequence $(a_1, a_2, ...)$ is **geometric** if a_{n+1}/a_n is constant.

- 70. Find the general formula for the arithmetic sequence that satisfies $a_3 = 3$ and $a_{12} = 21$. Also calculate $S_{20} = a_1 + a_2 + \cdots + a_{20}$. $a_n = -3 + 2n$ and $S_{20} = 360$
- 71. Find the general formula for the geometric sequence that satisfies $a_2 = 18$ and $a_4 = 2$. Also calculate S_5 . $a_n = 162 \cdot (\frac{1}{3})^n$ and $S_5 = \frac{242}{3}$

72. Find the sum of all three-digit numbers that are divisible by 3. 165150

We say that **limit** of a sequence a_n is the number L and write $\lim_{n \to \infty} a_n = L "$ if for any $\varepsilon > 0$ there exists an N such that $L - \varepsilon < a_n < L + \varepsilon$ for all n > N. We write " $\lim_{n \to \infty} a_n = \infty$ " if for any M > 0 there exist an N such that $a_n > M$ for all n > N. Similarly, " $\lim_{n \to \infty} a_n = -\infty$ " if for any $M > 0, \dots a_n < -M$ for all n > N. 73. (a) For which positive integers *n* is $4 - \frac{1}{100} < \frac{8n}{2n+9} < 4 + \frac{1}{100}$? $n \ge 1796$ (b) For which positive integers n is $\frac{8n}{2n+9} = 4$? None! (c) Is it true that $\lim_{n\to\infty} \frac{8n}{2n+9} = 4?$ Yes 74. Calculate $\lim_{n \to \infty} \frac{3n^2 + n + \sqrt{n}}{5n^2} = \frac{3}{5}$ 75. Find the following limits if they exist. (a) $\frac{n}{n+1}$ yes (b) $(-1)^n$ no (c) $\frac{3n}{9n+7}$ yes $\stackrel{\wedge}{\propto}$ (d) $\sin(3n)$ no (e) $\sin(\pi n)$ yes because the sequence is 0, 0, 0, 0, ...

(f) $\frac{(-1)^{n+1}}{n}$ yes Specifically, the limit is 0.

(g)
$$\lim_{n \to \infty} \frac{n+13}{n^2} = 0$$

 $(n+5)(n-2)$

(h)
$$\lim_{n \to \infty} \frac{(n+5)(n-2)}{n^2 - 6n + 7} = 1$$

(i)
$$\lim_{n \to \infty} \frac{n^2}{n+13} = \infty$$

(j)
$$\lim_{n \to \infty} \frac{8}{\sqrt{n}} = 0$$

- (k) $\lim_{n \to \infty} -2^n = -\infty$ (l) $\lim_{n \to \infty} (-2)^n$ doesn't exist
- (m) $\lim_{n \to \infty} 2^{-n} = 0$ (n) $\lim_{n \to \infty} 2^{1/n} = 1$

(o)
$$\lim_{n \to \infty} \left((9\sqrt{n} + \frac{1}{\sqrt{n}})^2 - 81n \right) = 18$$

☆ 76. Find $\lim_{n\to\infty} n \cdot (2^{1/n} - 1)$. The ☆ means that this task is harder than what is normally expected in this course. $\ln(2)$

77. (a) Simplify the formula
$$\frac{\left(\sqrt{n} - \sqrt{n-1}\right)\left(\sqrt{n} + \sqrt{n-1}\right)}{\sqrt{n} + \sqrt{n-1}} = \boxed{\frac{1}{\sqrt{n} + \sqrt{n-1}}}$$

(b) Find $\lim_{n \to \infty} \sqrt{n} - \sqrt{n-1} = \lim_{n \to \infty} \frac{1}{\sqrt{n} + \sqrt{n-1}} = 0$

78. Use the Squeeze Theorem with $\frac{-1}{n} \le \frac{\cos(n)}{n} \le \frac{1}{n}$ to find $\lim_{n \to \infty} \frac{\cos(n)}{n}$.

 $\lim_{n \to \infty} \frac{-1}{n} = 0 \text{ and } \lim_{n \to \infty} \frac{1}{n} = 0, \text{ so by Squeeze Theorem we have } \lim_{n \to \infty} \frac{\cos(n)}{n} = \boxed{0}.$

 $\stackrel{\wedge}{\sim}$ 79. Use the fact that $\left(1 - \frac{1}{\sqrt{n}}\right)^n \le \frac{1}{n}$ to find $\lim_{n \to \infty} (1/n)^{1/n}$.

We need an inequality involving $(1/n)^{1/n}$, but the right side of $\left(1 - \frac{1}{\sqrt{n}}\right)^n \leq \frac{1}{n}$ is just (1/n). Raising both sides of the equation to the power 1/n gives

$$1 - \frac{1}{\sqrt{n}} \le \left(\frac{1}{n}\right)^{1/n}.$$

The Squeeze Theorem requires two inequalities. The left-hand side now has limit

$$\lim_{n \to \infty} 1 - \frac{1}{\sqrt{n}} = 1 - 0 = 1,$$

so another inequality involving a limit of 1 would be good. In fact,

$$\left(\frac{1}{n}\right)^{1/n} \le 1$$

is enough, and it is true because $\frac{1}{n} \leq 1^n$ is true for all $n \geq 1$ (this is just $\frac{1}{n} \leq 1$).

We can now use the Squeeze Theorem:

$$1 - \frac{1}{\sqrt{n}} \le \left(\frac{1}{n}\right)^{1/n} \le 1$$
$$\lim_{n \to \infty} 1 - \frac{1}{\sqrt{n}} \le \lim_{n \to \infty} \left(\frac{1}{n}\right)^{1/n} \le \lim_{n \to \infty} 1$$
$$1 \le \lim_{n \to \infty} \left(\frac{1}{n}\right)^{1/n} \le 1$$
$$\lim_{n \to \infty} \left(\frac{1}{n}\right)^{1/n} = 1$$

80. (a) The *definition* of the number "0.385" is

$$3 \cdot 10^{-1} + 8 \cdot 10^{-2} + 5 \cdot 10^{-2}$$
.

Write this number as a fraction (or an integer, if possible). $\frac{385}{1000}$ or $\frac{77}{200}$

(b) The *definition* of the number "0.2222..." is the *limit* of the sequence

$$S_1 = 0.2$$

 $S_2 = 0.22$
 $S_3 = 0.222$
 $S_4 = 0.2222$
 $S_n = 0.2222$
 $n \text{ digits}$

Write this number as a fraction (or an integer, if possible). Hint: See Task 68(c).

$$S_n = \frac{a_n \text{ from Task 68(c)}}{10^n} = \frac{\frac{2}{9}(10^n - 1)}{10^n} = \frac{2}{9}(1 - 10^{-n}).$$

Therefore $\lim_{n \to \infty} S_n = \lim_{n \to \infty} \frac{2}{9}(1 - 10^{-n}) = \boxed{\frac{2}{9}}$

(c) The *definition* of the number "0.9999..." is the *limit* of the sequence

$$S_n = 0.\underbrace{99...9}_{n \text{ digits}}.$$

Write this number as a fraction (or an integer, if possible). $S_n = 1 - 10^{-n}$, so $\lim_{n \to \infty} S_n = 1$

81. Convert 1.8888...=
$$\frac{17}{9}$$
 and 0.313131...= $\frac{31}{99}$ into fractions.

82. Use the facts

$$0 < \ln(n)$$
 for all $n \in \mathbb{N}$ with $n \ge 2$

and

$$\ln(n) < \sqrt{n} \qquad \text{for all } n \in \mathbb{N}$$

to determine the value of $\lim_{n\to\infty} \frac{\ln(n)}{n}$. Diving the given inequalities by n (which is positive) gives $0 < \frac{\ln(n)}{n}$ and $\frac{\ln(n)}{n} < \frac{\sqrt{n}}{n}$. Using basic algebra,

$$\frac{\sqrt{n}}{n} = \frac{n^{1/2}}{n} = n^{-1/2} = \left(\frac{1}{n}\right)^{1/2},$$

so $\lim_{n \to \infty} \frac{\sqrt{n}}{n} = \left(\lim_{n \to \infty} \frac{1}{n}\right)^{1/2} = 0$, and the Squeeze Theorem gives $\lim_{n \to \infty} \frac{\ln(n)}{n} = \boxed{0}$.

83. Use the Squeeze Theorem to find $\lim_{n \to \infty} (5^n + 3^n)^{1/n}$ and $\lim_{n \to \infty} \frac{n^3}{3^n}$. First part: 5 from $(5^n)^{1/n} \le (5^n + 3^n)^{1/n} \le (5^n + 5^n)^{1/n}$.

Second part: 0

84. Find the limits of these sequences and functions:

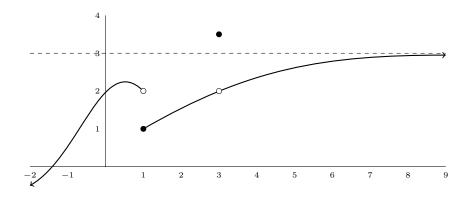
(a)
$$\lim_{n \to \infty} \frac{2^n + 4^{n+1/2}}{4^n} = 2$$

(b)
$$\lim_{x \to \infty} \frac{2^x + 4^{x+1/2}}{4^x} = 2$$

(c)
$$\lim_{n \to \infty} \frac{n^3 + n^{-3}}{n^2 + n^{-9}} = \infty$$

(d)
$$\lim_{x \to \infty} \frac{x^3 + x^{-3}}{x^2 + x^{-9}} = \infty$$

- (e) $\lim_{n \to \infty} \sin(\pi n) = 0$ because $\sin(\pi n) = 0$ for all $n \in \mathbb{N}$
- (f) $\lim_{x \to \infty} \sin(\pi x)$ doesn't exist
- 85. Calculate $\lim_{x \to \infty} 6^x = \infty$ and $\lim_{x \to -\infty} 6^x = 0$.
- 86. For the function whose graph is shown below, give the following limits (if they exist) to the nearest 0.5.
 - (a) $\lim_{x \to 1} f(x)$ does not exist
 - (b) $\lim_{x \to 2} f(x)$ 1.5 (or something similar)
 - (c) $\lim_{x \to 3} f(x)$ 2 (not 3.5, although f(3) = 3.5)
 - (d) $\lim_{x \to \infty} f(x)$ 3



87. Does $\lim_{x\to 0} \frac{|x|-4}{|x-4|}$ exist? Yes Does $\lim_{x\to 4} \frac{|x|-4}{|x-4|}$ exist? No Draw a graph of the function for x-values between -5 and 5.

At x = 0, $f = \frac{0-4}{4} = -1$. At x = 4 the function is not defined. There are three regions to consider:

- x > 4 (in which |x| = x and |x 4| = x 4),
- 0 < x < 4 (in which |x| = x but |x 4| = 4 x),
- x < 0 (in which |x| = -x and |x 4| = 4 x)

In fact, we can write this as a piecewise function:

 $\frac{|x| - 4}{|x - 4|} = \begin{cases} \frac{-x - 4}{4 - x} & \text{if } x < 0\\ \frac{x - 4}{4 - x} & \text{if } 0 \le x < 4\\ \frac{x - 4}{4 - x} & \text{if } x > 4 \end{cases} = \begin{cases} \frac{x + 4}{x - 4} & \text{if } x < 0\\ -1 & \text{if } 0 \le x < 4\\ 1 & \text{if } x > 4 \end{cases}$

88. Using the function $g(x) = \begin{cases} x^2 & \text{if } x \leq -2 \\ x & \text{if } -2 < x < 2, \\ 4 & \text{if } x = 2 \\ 3^{-x} & \text{if } x > 2 \end{cases}$ calculate the following:

- (a) $\lim_{x \to -\infty} g(x) = \lim_{x \to -\infty} x^2 = +\infty$, or you can say it does not exist
- (b) $\lim_{x \to (-2)^{-}} g(x) = \lim_{x \to -2^{-}} x^2 = 4$
- (c) $\lim_{x \to (-2)^+} g(x) = \lim_{x \to -2^+} x = \boxed{-2}$
- (d) $\lim_{x \to -2} g(x)$ does not exist because $4 \neq -2$
- (e) $\lim_{x \to 2^{-}} g(x) = \lim_{x \to 2^{-}} x = 2$

(f)
$$\lim_{x \to \infty} g(x) = \lim_{x \to \infty} 3^{-x} = 0$$

89. Calculate $\lim_{t \to 8} \frac{t+4+t^{1/3}}{t^2-8t+7}$ and $\lim_{t \to -3} \frac{\sqrt{2t+22}-4}{t+3}$. First part: just plug in t = 8! $\frac{8+4+2}{64-64+7} = \frac{14}{7} = 2$. Second part:

$$\lim_{t \to -3} \frac{\sqrt{2t+22}-4}{t+3} = \lim_{t \to -3} \frac{\left(\sqrt{2t+22}-4\right)}{(t+3)} \frac{\left(\sqrt{2t+22}+4\right)}{\left(\sqrt{2t+22}+4\right)} = \lim_{t \to -3} \frac{2t+22-16}{(t+3)\left(\sqrt{2t+22}+4\right)}$$
$$= \lim_{t \to -3} \frac{2(t+3)}{(t+3)\left(\sqrt{2t+22}+4\right)} = \lim_{t \to -3} \frac{2}{\sqrt{2t+22}+4} = \frac{2}{8} = \boxed{\frac{1}{4}}$$

90. (a) Expand $(\sqrt{h+1}-1)(\sqrt{h+1}+1)$ and then simplify as much as possible. $(\sqrt{h+1}-1)(\sqrt{h+1}+1) = (h+1)^2 - \sqrt{h+1} - \sqrt{h+1} - 1 = h$

(b) Calculate
$$\lim_{h \to 0} \frac{\sqrt{h+1}-1}{h}$$
.
 $\lim_{h \to 0} \frac{\sqrt{h+1}-1}{h} \cdot \frac{\sqrt{h+1}+1}{\sqrt{h+1}+1} = \lim_{h \to 0} \frac{h}{h\sqrt{h+1}+h} = \lim_{h \to 0} \frac{1}{\sqrt{h+1}+1} = \boxed{\frac{1}{2}}$

91. Calculate the following limits:

(a)
$$\lim_{x \to \infty} \frac{3x^3 - 2x + 1}{6x^3 + x^2 + x + 19} = \boxed{\frac{1}{2}}$$
(b)
$$\lim_{x \to \infty} \frac{3x^2 - 2x + 1}{6x^3 + x^2 + x + 19} = \boxed{0}$$
(c)
$$\lim_{x \to 0} \left(\frac{8x - 1}{x - x^2} + \frac{1}{x}\right) = \boxed{7}$$
(d)
$$\lim_{x \to \infty} \left(\sqrt{9x^2 + 5x} - 3x\right) = \boxed{\frac{5}{6}}$$
(e)
$$\lim_{x \to \infty} (4^x + 1)^{1/4} = \boxed{\infty}$$
(f)
$$\lim_{x \to \infty} (4^x + x)^{1/x} = \boxed{4}$$
(g)
$$\lim_{x \to 7} \frac{x^2 - 4x - 21}{x^2 - 11x + 28} = \boxed{\frac{10}{3}}$$
(h)
$$\lim_{x \to 0} \frac{x^3 - 8x^2 + 3x + 5}{x^9 - 6x^5 + x^4 - 12x + 1} = \boxed{5}$$

92. (a) Find the vertical asymptote(s) of

$$g(x) = \frac{1}{x^2 + x - 6}.$$
 $x = -3, x = 2$

(b) Find the vertical asymptote(s) of

$$f(x) = \frac{x^2 - x - 2}{x^2 + x - 6}.$$
 $x = -3$ only

93. What horizontal asymptotes does the function

$$f(x) = \frac{x}{|x| + 5}$$

have? Hint: Calculate $\lim_{x \to \infty} f(x)$ and $\lim_{x \to -\infty} f(x)$. y = 1, y = -1

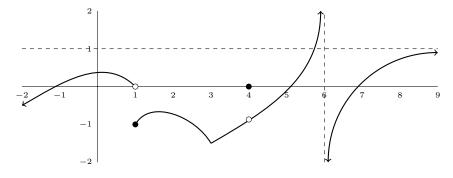
94. If f(x) is a function for which

$$24x - 41 \leq f(x) \leq 4x^2 - 5$$

for all x, what is $\lim_{x\to 3} f(x)$?

 $\lim_{x \to 3} (24x - 41) = 31 \text{ and } \lim_{x \to 3} (4x^2 - 5) = 31, \text{ so the Squeeze Theorem guarantees}$ that $\lim_{x \to 3} f(x) = \boxed{31}.$

95. List all points where the function graphed below is discontinuous.



x = 1, x = 4, x = 6 The function is continuous at x = 3.

- 96. Give an example of a function that is discontinuous at infinitely many points. There are many examples. Here are two:
 - tan(x) is discontinuous (in fact, undefined) at all $x = \frac{\pm \pi}{2} + 2\pi n$ for integer n.
 - The "floor" function |x| is discontinuous at every integer x = n.
- ≈ 97 . Give an example of a function that is discontinuous at *every* point. The "Dirichlet function" is a famous (well, famous within mathematics) example: $f(x) = \begin{cases} 1 & \text{if } x \text{ is rational,} \\ 0 & \text{if } x \text{ is irrational.} \end{cases}$
 - 98. Find all value(s) of the parameter p for which

$$f(x) = \begin{cases} 3x + p & \text{if } x \le 8\\ 2x - 5 & \text{if } x > 8 \end{cases}$$

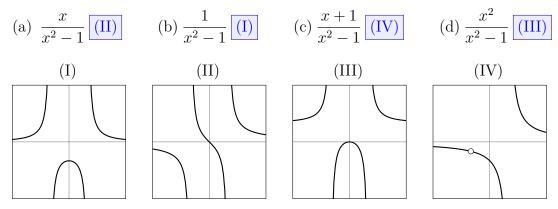
is continous. p = -13

99. Find all value(s) of the parameters a, b for which

$$f(x) = \begin{cases} x & \text{if } |x| \le 2\\ x^2 + ax + b & \text{if } |x| > 2 \end{cases}$$

is continuous. a = 1, b = -4

100. Match the functions with their graphs:



101. Without graphing, determine which one of the three equations below has a solution with $0 \le x \le 3$.

(A)
$$x^2 = 4^x$$
, (B) $x^3 = 5^x$, (C) $x^5 = 6^x$.

(C) because the function $f(x) = x^5 - 6^x$ has f(0) = -1 and f(3) = 27. Since -1 < 0 < 27, by the Intermediate Value Theorem, there must exist an x in [0,3] such that f(x) = 0.

102. Let
$$f(x) = \frac{13x - 77}{x - 5}$$
.

- (a) f(4) = 25 and f(11) = 11. Does the Intermediate Value Theorem guarantee that f(x) = 10 for some $x \in [4, 11]$? No because f is discontinuous at x = 5.
- (b) f(6) = 1 and f(11) = 11. Does the Intermediate Value Theorem guarantee that f(x) = 10 for some $x \in [6, 11]$? Yes because f is continuous on [6, 11]. (In fact f(9) = 10, though the task does not ask for this.)
- (c) f(6) = 1 and f(8) = 9. Does the Intermediate Value Theorem guarantee that f(x) = 10 for some $x \in [6, 8]$? No because 10 is not in the *y*-interval [f(6), f(8)] = [1, 9].

103. (a) Find
$$\lim_{x \to 0} \frac{(5+x)^3 - 125}{x} = 75$$

(b) Find $\lim_{h \to 0} \frac{(5+h)^3 - 125}{h} = 75$
(c) Find $\lim_{h \to 0} \frac{(x+h)^3 - x^3}{h}$. Your answer will be a formula with x . $3x^2$